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Abstract

We describe a new technique to detect and analyze pe-
riodic motion as seen from both a static and moving cam-
era. By tracking objects of interest, we compute an object’s
self-similarity as it evolves in time. For periodic motion,
the self-similarity measure is also periodic, and we apply
time-frequency analysis to detect and characterize the pe-
riodic motion. A real-time system has been implemented to
track and classify objects using periodicity. Examples of
object classification, person counting, and non-stationary
periodicity are provided.

1 Introduction

This document is the final report for the DARPA grant AS-
SERT 01-5-29150. Under the support of this grant, we
studied the detection and analysis of periodic motion, with
applications toward use in video surveillance. Parts of this
report were published in [2, 3].

Object motions that repeat are common in both nature
and the man-made environment in which we live. Exam-
ples include a person walking, a waving hand, a rotating
wheel, and a flying bird. Knowing that an object’s motion
is periodic is a strong cue for object and activity recogni-
tion [5]. Periodic motion can also aid in tracking objects.
Furthermore, the periodic motion of people can be used to
recognize individuals [10].

We define the motion of a point X (t) at time ¢ periodic
if it repeats itself with a constant period p, i.e.:

Xt)=X¢t+p)+T@), 1)

where T'(t) is a translation of the point. If p is not constant,
then the motion is cyclic. In this work, we analyze locally
(in time) periodic motion, which approximates many natu-
ral forms of cyclic motion.

Figure 1. Low resolution image sequences of a
periodic motion (a person walking on a tread-
mill). The effective resolution is 9x15 pixels.

1.1 Motivation

Our work is motivated by the ability of humans to recog-
nize periodic movement at very low resolutions. For exam-
ple, Figure 1 shows such a sequence. The effective resolu-
tion of this sequence is 9x15 pixels (it was created by re-
sampling a 140x218 (8-bit, 30fps) image sequence to 9x15
and back to 140x218 using bicubic interpolation). In this
sequence, note the similarity between frames 0 and 15. We
will use image similarity to detect and analyze periodic mo-
tion.

1.2 Assumptions

In this work, we make the following assumptions: (1)
the orientation and apparent size of the segmented objects
don’t change significantly during several periods (or do so
periodically); (2) the frame rate is sufficiently fast to cap-
ture the periodic motion (at least double the highest fre-
quency in the periodic motion).




2 Related Work

There has been recent interest in segmenting and analyzing
periodic and cyclic motion. Existing methods can be cate-
gorized as those requiring point correspondences [17, 19];
those analyzing periodicities of pixels [11, 15]; those ana-
lyzing features of periodic motion [13, 4, 7]; and those an-
alyzing the periodicities of object similarities [2, 17]. Re-
lated work has been done in analyzing the rigidity of mov-
ing objects [18, 12]. Below we review the most relevant
work.

Seitz and Dyer [17] compute a temporal correlation plot
for repeating motions using different image comparison
functions, d4 and dy. The affine comparison function d 4
allows for view-invariant analysis of image motion, but re-
quires point correspondences (which are achieved by track-
ing reflectors on the analyzed objects). The image compar-
ison function d; computes the sum of absolute differences
between images. However, the objects are not tracked, and
thus must have non-translational periodic motion in order
for periodic motion to be detected. The K-S test is uti-
lized to classify periodic and non-periodic motion. When
using dy, this test fails to correctly classify most of our non-
periodic data sequences (e.g., the sequence in Figure 11).
In these cases, the correlation matrix is non-linear due to
object viewpoint and lighting changes. The two samples
being tested in the K-S test, the hypothesized period-trace
and the correlation matrix, can have significantly different
cumulative distribution functions; the motion is therefore
incorrectly classified as periodic.

Liu and Picard [11] assume a static camera and use
background subtraction to segment motion. Foreground
objects are tracked, and their path is fit to a line using a
Hough transform (all examples have motion parallel to the
image plane). The power spectrum of the temporal histo-
ries of each pixel is then analyzed using Fourier analysis,
and the harmonic energy cause by periodic motion is es-
timated. An implicit assumption in [11] is that the back-
ground is homogeneous (a sufficiently non-homogeneous
background will swamp the harmonic energy). Our work
differs from [11] and [15] in that we analyze the periodic-
ities of the image similarities of large areas of an object,
not just individual pixels aligned with an object. Because
of this difference (and the fact that we use a smooth im-
age similarity metric) our Fourier analysis is much simpler,
since the signals we analyze do not have harmonics of the
fundamental frequency. The harmonics in [11] and [15]
are due to the large discontinuities in the signal of a single
pixel; our self-similarity metric does not have such discon-
tinuities.

Fujiyoshi and Lipton [4] segment moving objects from
a static camera and extract the object boundaries. From
the object boundary, a “star” skeleton is produced, which is

then Fourier analyzed for periodic motion. This method re-
quires accurate motion segmentation, which is not always
possible (e.g., see Figure 8). Also, objects must be seg-
mented individually; no partial occlusions are allowed (as
shown in Figure 13). In addition, since only the boundary
of the object is analyze for periodic change (and not the
interior of the object), some periodic motions may not be
detected (e.g., a textured rolling ball, or a person walking
directly toward the camera).

This work extends our work in [2] by allowing a mov-
ing camera (rather than only a static one), and allowing
for the detection and analysis of non-stationary periodicity
(i-e., periodicity that changes in time) using time-frequency
analysis. We also demonstrate that the object does not
have be segmented from the background (if the background
is sufficiently homogeneous). In addition, we explain the
structure of the similarity matrix, and suggest how it can be
exploited for object classification.

3 Method

The algorithm for periodicity detection and analysis con-
sists of two parts. First, we segment the motion and track
objects in the foreground. We then align each object along
the temporal axis (using the object’s tracking results) and
compute the object’s self-similarity as it evolves in time.
For periodic motions, the self-similarity metric is periodic,
and we apply time-frequency analysis to detect and charac-
terize the periodicity.

3.1 Motion Segmentation and Tracking

Given an image sequence I; from a moving camera, we
segment regions of independent motion. The images I are
first Gaussian filtered to reduce noise, resulting in 1. The
image I} is then stabilized [6] with respect to image I}*__,
resulting in S¢ ;.. The images S;;—, and I are differ-
enced and thresholded to detect regions of motion, result-
ing in a binary motion image:

_lif I =8| >T
My—r = { 0 otherwise )

where T is a threshold. In order to eliminate false motion
at occlusion boundaries (and help filter spurious noise), the
motion images M; . and M; __, are logically and’ed to-
gether, i.e., My = M; . A M; .. An example of M; is
shown in Figure 14. Note that for large values of 7, motion
parallax will cause false motion in M;. In our examples
(for a moving camera), 7=300ms was used.

In many surveillance applications, images are acquired
using a camera with automatic gain, shutter, and exposure.




In these cases, normalizing the image mean before compar-
ing images I, and I;, will help minimize false motion due
to a change in the gain, shutter, or exposure.

A morphological open operation is performed on M,
(yielding M;"), which reduces motion due to image noise.
The connected components of M are computed, and small
components are eliminated (further reducing image noise).
The connected components which are spatially similar (in
distance) are then merged, and the merged connected com-
ponents are added to a list of objects O; to be tracked. An
object has the following attributes: area, centroid, bound-
ing box, velocity, ID number, and age (in frames). Objects
in Oy and O¢44, k > 0, are corresponded using spatial and
temporal coherency.

It should be noted that the tracker is not required to be
very accurate, as the self-similarity metric we use is robust
and can handle tracking errors of several pixels (as mea-
sured in our examples).

3.2 Periodicity Detection and Analysis

The output of the motion segmentation and tracking algo-
rithm is a set of foreground objects, each of which has a
centroid and size. To detect periodicity for each object, we
first align the segmented object (for each frame) using the
object’s centroid, and resize the objects (using a Mitchell
filter [16]) so that they all have the same dimensions. The
object O;’s self-similarity is then computed at times ¢; and
t2. While many image similarity metrics can be defined
(e.g., normalized cross-correlation, [8], [1]), perhaps the
simplest is absolute correlation:

S 104(@y) - On@y)l, O

(z’y)eBtl

St1,t2 =

where B;, is the bounding box of the object O¢,. In order
to account for tracking errors, the minimal S is found by
translating over a small search radius r:

! .
Sti,4p =  min
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For periodic motions, S’ will also be periodic. For ex-
ample, Figure 3 shows S’ for all combinations of ¢; and
to for a walking sequence (the similarity values have been
linearly scaled so that dark regions show more similarity).
Note that a similarity matrix should be symmetric along
the main diagonal; however, if substantial image scaling is
required, this won’t be the case. In addition, there will al-
ways be a dark line on the main diagonal (since an object
is similar to itself at any given time), and periodic motions
will have dark lines (or curves if the period is not constant)
parallel to the diagonal.

To determine if an object exhibits periodicity, we ana-
lyze the spectral power of S’ using Fourier analysis. While
we could analyze the 2-D spectral power of S’, for com-
putational efficiency, we estimate the 1-D power spectrum
of for a fixed ¢; and all values of ¢5 (i.e. the columns
of S’). In estimating the spectral power, the columns of
S’ are linearly detrended and a Hanning filter is applied.
A more accurate spectrum is estimated by averaging the
spectra of multiple £;’s [14] to get a final power estimate
P(f), where f is the frequency. Periodic motion will show
up as peaks in this spectrum at the motion’s fundamen-
tal frequencies. A peak at frequency f, is significant if
P(fp) > pp + Kop, where K is a threshold value (typ-
ically 3), mp is the mean of P, and sp is the standard
deviation of P. Note that multiple peaks can be significant,
as we will see in the examples.

3.3 Time-Frequency Analysis

For stationary periodicity (i.e., periodicity that doesn’t
change with time), the above analysis is sufficient. How-
ever, for non-stationary periodicity, Fourier analysis is not
directly appropriate. Instead, we use time-frequency anal-
ysis and the Short-Time Fourier Transform (STFT) [14]:

(o]

F,(t,v;h) = / c(u)h* (u — t)e* ™ du, (5)

—0o0

where h*(u — t) is a short-time analysis window, and z(u)
is the signal to analysis (S’ in our case). The short-time
analysis window effectively suppresses the signal z(u) out-
side an neighborhood around the analysis time pointu = .
Therefore, the STFT is a “local” spectrum of the signal
z(u) around ¢.

We use a Hanning windowing function as the short-time
analysis window. The window length should be chosen to
be long enough to achieve a good power spectrum estimate,
but short enough to window a local change in the period-
icity. In practice, a window length equal to several periods
works well for typical human periodic motions (walking,
running).

An example of non-stationary periodicity is given in
Section 4.4.

3.4 Real-Time System

A real-time system has been implemented to track and clas-
sify objects using periodicity. The system uses a dual pro-
cessor 400MHz Pentium I Xeon PC, and runs at 15Hz with
640x240 grayscale images captured from an airborne video
camera. The system uses the real-time stabilization results
from [6].
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Figure 2. Person walking on a treadmill.

4 Examples
4.1 Person Walking on a Treadmill

The first example is of a periodic motion with no (little)
translational motion, a person walking on a treadmill (Fig-
ure 2). This sequence was captured using a static JVC KY-
F55B color camera at 640x480 @ 30fps, deinterlaced, and
scaled to 160x120. Since the camera is static and there is
no translational motion, background subtraction was used
to segment the motion [2].

The similarity matrix S’ for this sequence is shown in
Figure 3; the first column of S’ is shown in Figure 5. The
darkest line is the main diagonal, since S'(¢,t) = 0. The
dark lines parallel to the main diagonal are formed since
S'(t,kp/2 + t) ~ 0, where p is the period, and k is an
integer. The dark lines perpendicular to the main diagonal
are formed since S'(¢,kp/2 — t) =~ 0, and is due to the
symmetry of human walking. The cross diagonals causes
a second peak in the power spectrum, double the funda-
mental frequency (Figure 6). It is interesting to note that
at the intersections of these lines, these images are similar
to either (a), (b), or (c) in Figure 2 (see Figure 4). That
is, S’ encodes the phase of the person walking, not just the
period. This fact is exploited in the example in Section 4.3.

Note that not all periodic motion has an S’ with cross-
diagonal lines. For example, for the motion of a running
dog with period p (captured at 30 fps), no two image frames
within a cycle are similar (i.e., S'(¢1,¢2) > 0,0 < t; <
ta < p. This fact can be exploited for moving object clas-
sification.

4.2 Person / Vehicle Classification

A common task in an automated surveillance system is to
classify moving objects. In this example, video from an air-
borne surveillance camera is used to track moving objects
and classify them as humans or vehicles. While blob size
could be used for object classification, often the blobs are
noisy, broken up, and don’t accurately represent the object
size. Further, blob size alone could incorrectly classify a
group of people as a vehicle.

Similarity of Image T‘ and T2

0 @ . 4 %0 € 70 s 0 0
T

Figure 3. S’ for a person walking on a tread-
mill. Dark regions correspond to images with
greater similarity.

Similarity of Image T‘ and T,‘,

Figure 4. The intersections of S’ are images
similar to the poses given in Figure 2.

Similarity of Image 1and T

,_ Smimiy

Figure 5. Similarity of image 1 with T for a
walking person.
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Figure 7. Person running across a parking lot.

The video in this example was recorded from a Sony
XC-999 camera (640x240 @ 30fps) at an altitude of 1500
feet. There is significant motion blur due to a slow shutter
speed and fast camera motion. Additional noise is induced
by the analog capture of the video from a duplicated SVHS
tape. Figure 7 shows a person running across a parking
lot.). The person is approximately 7x12 pixels in size (Fig-
ure 8). The similarity matrix in Figure 9 shows a clear
periodic motion, which corresponds to the person running.
Figure 10 shows that the person is running with a frequency
of 1.3Hz; the second peak at 2.6Hz is due to the symmetry
of human motion as described in Section 4.1. Figure 12
shows the similarity matrix for the vehicle in Figure 11,
which has no periodicity. The spectral power for the vehi-
cle is flat.

(a) ® ©

Figure 8. Zoomed images of the person in Fig-
ure 7, which correspond to the poses in Fig-
ure 2. The person is 7x12 pixels in size.

Similarity of image T and T,

Figure 9. S’ for the running person in Figure 7.

Spectral Power of Simélarity

— Power

= Mean
- Mean+3"SD

] 0
Frequency (Hz)

Figure 10. Spectral power the running person
in Figure 7.

Figure 11. Vehicle driving across a parking lot.

Similarity of Image T‘ and T,
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Figure 12. S’ for the moving vehicle in Fig-
ure 11,




Figure 13. Three people running.

Figure 14. Segmented motion from Figure 13.

4.3 Counting People

Another common task in an automated surveillance system
is to count the number of people entering and leaving an
area. This task is difficult, since when people are close to
each other, it is not always simple to distinguish the indi-
viduals. For example, Figure 13 is a frame from an airborne
video sequence that shows three people running along a
road; the result of the motion segmentation is shown in
Figure 14. Simple blob counting will give an inaccurate es-
timate of the number of people. However, since we know
the approximate location of the plane (via GPS), the ap-
proximate camera direction, and have an approximate site
model (a ground plane), we can estimate the expected im-
age size an “average” person should be. This size is used
to window a region with motion for periodic detection. In
this example, three non-overlapping windows were found
to have periodic motion, each corresponding to a person.
The similarity matrices and spectral powers are shown in
Figure 15.

The similarity matrices in Figure 15 can also be used
to extract the phase angle of the running person. In this
example, the phase angles (which are encoded in the inter-
sections of the main and cross-diagonal lines) are all signif-
icantly different from one another, giving further evidence
that we have not over-counted the number of people.

4.4 Non-Stationary Periodicity

In this example, a person is walking, and roughly half way
through the sequence, starts to run (see Figure 16). The

Person 1 Person 2 Person 3

1 0.35 14

03 12
025 1
g 08 02 08
o4 015 06

o1 04
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15 o 15 0

Froquency () Fraquancy () Fruoncy ()

Figure 15. Similarity matrices and spectral
power for the 3 people in Figure 13. Note
‘that the frequency resolution is not as high as
in Figure 10, since fewer frames are used to

estimate the power.

Figure 16. Person walking, then running.

similarity matrix (Figure 17) clearly shows this transition.
Using a short-time analysis windowing Hanning function
of length 3300ms (100 frames), the power is estimated in
the walking and running stages (Figure 18).

5 Conclusions

We have described a new technique to detect and analyze
periodic motion as seen from both a static and moving cam-
era. By tracking objects of interest, we compute an object’s
self-similarity as it evolves in time. For periodic motion,
the self-similarity measure is also periodic, and we apply
time-frequency analysis to detect and characterize the peri-
odic motion.

Current work includes analyzing S’ using texture analy-
sis techniques (e.g., [9]) to robustly extract the parameters
of the periodicity. We are also classifying different types
of periodicity due to different types of motion symmetry
(e.g., walking/running humans, running dogs, and flying
birds all have distinguishing features in S’ due to their dif-
ferent motion symmetries). Future work includes using al-




Similarity of Image T, and T,

[4] H. Fujiyoshi and A. Lipton. Real-time human motion anal-
ysis by image skeletonization. In IEEE Workshop on Appli-

» cations of Computer Vision, October 1998.

@ o [5] N. H. Goddard. Human activity recognition. In M. Shah

and R. Jain, editors, Motion-Based Recognition, pages 147~

170. Kluwer Academic Publishers, 1997.

= [6] M. Hansen, P. Anandan, K. Dana, G. van der Wal, and

' P. Burt. Real-time scene stabilization and mosaic construc-

v . tion. In DARPA Image Understanding Workshop, Monter-

- rey, CA, Nov. 1994.

K [7]1 B. Heisele and C. Wohler. Motion-based recognition of
pedestrians. In International Conference on Patern Recog-

Figure 17. S’ for the person walking/running nition, August 1998.
in Figure 16. [8] D. Huttenlocher, G. A. Klanderman, and W. Rucklidge.

Comparing images using the hausdroff distance. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
° Power: Running 15(9):805-863, 1993.

[9] H.-C.Lin, L.-L. Wang, and S.-N. Yang. Extracting period-
icity of a regular texture based on autocorrelation functions.
Pattern Recognition Letters, 18:433-443, 1997.

[10] J. Little and J. Boyd. Recognizing people by their gate: the
shape of motion. Videre, 1(2), 1998.
[11] F Liu and R. Picard. Finding periodicity in space and
time. International Conference on Computer Vision, Jan-
Fr;quency (':Iz) * uary 1998.
[12] D. McReynolds and D. Lowe. Rigidity checking of 3D
. point correspondences under perspective projection. IEEE
.Flgure 18_' SPeCt_ral power for the person walk- Transactions on Pattern Analysis and Machine Intelligence,
ing/running in Figure 16. 18(12):1174~1185, 1996.
[13] S. Niyogi and E. Adelson. Analyzing gait with spatiotem-
poral surfaces. In IEEE Workshop on Motion of Non-Rigid
and Articulated Objects, pages 64-69, Austin, Texas, 1994.

x1o° Power: Walking
1

x

e pOWST
~- mean
c:-+_mean+2°SD

5 10
Frequency (Hz)

ternative independent motion algorithms for moving cam- [14] A. Oppenheim and R. Schafer. Discrete-time signal pro-
era video, which could make the analysis more robust for cessing. Prentice-Hall, 1989.
non-homogeneous backgrounds. [15] R.Polana and R. Nelson. Detection and recognition of peri-

odic, non-rigid motion. International Journal of Computer
Vision, 23(3):261-282, June/July 1997.

[16] D. Schumacher. General filtered image rescaling. In
D. Kirk, editor, Graphics Gems IIl. Harcourt Brace Jo-

Periodicity can also be used to aid in tracking, particu-
larly for occlusions (e.g., when two people walk past each
other and one occludes the other), the periodicity (and im-

age history) of the people can be used to determine which vanovich, 1992. _
person is being occluded). [17] S. M. Seitz and C. R. Dyer. View-invariant analysis of
Acknowledgments: The airborne video was provided cyclic motion. International Journal of Computer Vision,

by the DARPA Airborne Video Surveillance project. This 25(3):1-23, 1997.

paper was written under the support of Contract DAAL-01- [18] A ‘Selinger and L. Wixson. Classifying moving objects as

97-K-0102 (ARPA Order E653) and DAAB07-98-C-JO19. rigid or non-rigid without correspondences. In DARPA Im-
age Understanding Workshop, pages 341-347, November
1998. :

References [19] P Tsai, M. Shah, K. Keiter, and T. Kasparis. Cyclic motio

detection. Pattern Recognition, 27(12):1591-1603, 1994.

[1] D.H. Ballard and M. J. Swain. Color indexing. Int. Journal
of Computer Vision, 7-1:11-32, 1991.

[2] R. Cutler and L. Davis. View-based detection and analysis
of periodic motion. In International Conference on Patern
Recognition, Brisbane, Australia, August 1998.

[3]1 R. Cutler and L. Davis. Real-time periodic motion detec-
tion, analysis, and applications. In Proceedings of the Com-
puter Vision and Pattern Recognition, Fort Collins, Col-
orado, June 1999.




